৭ম শ্রেণির গণিত ১০ম অধ্যায় সমাধান : আমরা সমতল দ্বিমাত্রিক জ্যামিতিক আকৃতি সম্পর্কে জেনেছি। ত্রিভুজ, সামান্তরিক, আয়ত, বর্গ ও বৃত্ত ইত্যাদি আকৃতির পরিসীমা ও ক্ষেত্রফল নির্ণয় করা শিখেছি। এবার মনে করো দৈর্ঘ্য ও প্রস্থের মান জানা নিই। তাহলে চলো দেখা যাক মান বসানোর পরিবর্তে দৈর্ঘ্য ও প্রস্থকে অজানা রাশি হিসেবে চলক দিয়ে প্রকাশ করে দেখি।
সালাম স্যার গণিত বিষয় পড়ান। তিনি একদিন ক্লাসে এসে শিক্ষার্থীদের উদ্দেশ্যে বললেন, আমরা আয়তাকার, বর্গাকার, সামান্তরিক আকৃতির, ত্রিভুজাকৃতি এমনকি বৃত্তাকার আকৃতি সম্পর্কে জেনেছি। তাদের ক্ষেত্রফল নির্ণয় করা শিখেছি। আমরা অনেক জিনিস ব্যবহার করি বা আমাদের চারপাশে এমন জায়গা-জমি আছে, যাদের আকৃতি অনেকটা নিম্নরূপ।
৭ম শ্রেণির গণিত ১০ম অধ্যায় সমাধান
একটু ভালোভাবে লক্ষ করলে আমরা দেখতে পাবো উপরের ছবিগুলোর বিশেষ কোনো একটি অংশ একই ধরনের আকৃতি প্রদর্শন করে। পূর্বের শ্রেণিতে এই ধরনের আকৃতি সম্পর্কে জেনেছি। তোমরা কি বলতে পারবে এই ধরনের জ্যামিতিক আকৃতিকে আমরা কী বলে থাকি?
হ্যাঁ, এই ধরনের জ্যামিতিক আকৃতিকে আমরা ট্রাপিজিয়াম বলে থাকি। আমাদের স্কুল যে জমিতে অবস্থিত অর্থাৎ আমাদের স্কুলের জমির সীমানার আকৃতির সাথে ট্রাপিজিয়াম আকৃতির কোনো মিল আছে কি? চলো আজ আমারা আমাদের স্কুলের ট্রাপিজিয়াম আকৃতির জমি মেপে দেখি।
সালাম সাহেব দৈর্ঘ্য মাপার লম্বা ফিতা এবং শিক্ষার্থীদের নিয়ে স্কুল মাঠে গেলেন। শিক্ষার্থীরা তাঁর নির্দেশনা অনুসারে স্কুলের জমির সীমানা মেপে নিচের চিত্রটি অঙ্কন করে। জমিটির শীর্ষবিন্দুতে A, B, D এবং E বিন্দু বসিয়ে ABDE চতুর্তুজটি পেল। চিত্রে ABDE চতুর্ভুজটির দুইটি বিপরীত বাহু AE || BD এবং অপর বাহদ্বয় অসমান্তরাল।
সুতরাং ABDE চতুর্ভুজটি একটি ট্রাপিজিয়াম। শিক্ষার্থীরা ABDE ট্রাপিজিয়াম আকৃতিটিকে দুইটি অংশে বিভক্ত করে। প্রথম অংশ ABCE একটি আয়ত এবং দ্বিতীয় অংশ ECD একটি সমকোণী ত্রিভুজ। যেহেতু শিক্ষার্থীরা আয়ত ও ত্রিভুজের ক্ষেত্রফল পরিমাপ করা জানে, সেহেতু তাদের স্কুলের জমির ক্ষেত্রফল নিয়রূপে হিসাব করে বের করে।
নানা রকম আকৃতি মাপি
বিকল্প পদ্ধতিতে ট্রাপিজিয়ামের ক্ষেত্রফল নির্ণয়:
১. কাগজে নিচের চিত্রের মতো ট্রাপিজিয়াম এঁকে ট্রাপিজিয়ামটি কেটে নাও।
২. সমান্তরাল বাহদ্বয় এবং উচ্চতা মেপে খাতায় লিখে সংরক্ষণ করো।
৩. এবার বৃহত্তর বাহু থেকে স্ষুদ্রতর বাহুর সমান মাপ নিয়ে সামান্তরিক তৈরি করো।
৪. এখন ত্রিভুজ অংশটুকু কেটে আলাদা করে ফেল। ফলে ট্রাপিজিয়ামটি সামান্তরিক ও একটি ত্রিভূজে বিভক্ত হবে।
৫. তোমার তো সামান্তরিকের ক্ষেত্রফল ও ত্রিভুজের ক্ষেত্রফল নির্ণয়ের সূত্র জানা আছে। সুতরাং সামান্তরিক ও ত্রিভুজের ক্ষেত্রফলের সূত্র ব্যবহার করে সহজেই ট্রাপিজিয়ামের ক্ষেত্রফল নির্ণয় করতে পারবে আশা করি।
একক কাজ:
১. গ্রাফ পেপারের উপর একটি ট্রাপিজিয়াম আক। প্রতিটি ক্ষুদ্রতম বর্গকে 1 বর্গ একক এবং আংশিক ক্ষুদ্রতম অংশকে 0.5 বর্গ একক ধরে ট্রাপিজিয়ামটির ক্ষেত্রফল নির্ণয় করো।
২. একটি ট্রাপিজিয়ামের সমান্তরাল বাহ দুইটির দৈর্ঘ্যের অন্তর 8 সেন্টিমিটার এবং এদের লম্ব দূরত্ব 24 সেন্টিমিটার। যদি ট্রাপিজিয়ামটির ক্ষেত্রফল 312 বর্গ সেন্টিমিটার হয়, তবে এর সমান্তরাল বাহ দুইটির দের্ঘ্য নির্ণয় করো।
ঘনবস্তু (Solids)
আমরা সবাই কমবেশি নিচের জিনিসগুলোর সাথে পরিচিত। তাই না? টুথপেস্ট, সাবান, বিস্কিট, ওষধ আরো অনেক নিত্য প্রয়োজনীয় জিনিসপত্র আমরা ব্যবহার করে থাকি। পূর্বের শ্রেণিতে এরূপ মোরক বা বাক্সের আকৃতি সম্পর্কে আমরা জেনেছি। এবার নিচের দ্রব্যগুলো ভালোভাবে পর্যবেক্ষণ করে ছকের খালি ঘরগুলো পুরণ করো এবং তোমার চেনা-জানা আরো দু-তিনটি দ্রব্যের প্যাকেট সংগ্রহ করে তাদের ছবি আঁক, আকৃতির নাম, প্রতিটি পৃষ্ঠতলের আকার, পৃষ্ঠতলের সংখ্যা লিখ।
উপরের ছকে বিভিন্ন বস্তুর মোরকের আকৃতি সম্পর্কে ভাবনা-চিন্তা করেছো। কিন্তু পড়া-লেখার জন্য তোমার বই, খাতা, পেন্সিল, কলমের মতো অতি প্রয়োজনীয় জিনিসগুলোর আকৃতি সম্পর্কে ধারণা থাকা দরকার। তোমার গণিত বইয়ের আকৃতি এবং পেন্সিলের আকৃতির মধ্যে কোনো পার্থক্য লক্ষ করেছো কি? আবার তুমি ও তোমার বন্ধুরা মাঝে মাঝেই রুবিক”স কিউব” নিয়ে প্রতিযোগীতায় মেতে ওঠো।
এই রুবিক”স কিউব” এর আকৃতি অনেকটা মোটা ডিকশনারির মতো হলেও ভালোভাবে পর্যবেক্ষণ করলে এই দুইটি জিনিসের আকৃতির মধ্যকার পার্থক্য বুঝতে পারবে। এবার চলো তোমার বই বা খাতা কীভাবে তৈরি হয় এবং তৈরিকৃত আকৃতিকে আমরা কী বলতে পারি তা জেনে নিই। সমান মাপের কতগুলো কাগজ নাও। A4 সাইজের প্রিন্টের কাগজ হলে আরো ভালো হয়।
তুমিতো জানো, A4 সাইজের এক তা কাগজকে দ্বিমাত্রিক আয়ত বিবেচনা করা হয়ে থাকে। এবার টেবিলের উপর কাগজটি রেখে একের পর এক অনেকগুলো রাখলে নিচের চিত্রের মতো হবে।
ফলে সর্বশেষ যে আকৃতিটি পাবে তা হবে একটি আয়তাকার ঘনবস্কু। এক তা কাগজ দ্বিমাত্রিক (শুধু দৈর্ঘ্য ও প্রস্থ বিবেচনা করা হয়) হলেও অনেকগুলো কাগজ যখন পরপর রেখে করা হয় তখন আমরা আরেকটি মাত্রা উচ্চতা পেয়ে থাকি। তাহলে আমরা বলতে পারি, আয়তাকার ঘনবস্তুর দৈর্ঘ্য, প্রস্থ ও উচ্চতা আছে। অর্থাৎ আয়তাকার ঘনবস্ধু তিন মাত্রিক। নিচের ছবিটি লক্ষ করো। এটি একটি বাক্স। বাক্সটি আয়তাকার ঘনবস্তু আকৃতির। বাক্সটির তলগুলো সতর্কতার সাথে খুলে ফেললে আমরা ছয়টি পৃষ্ঠতল দেখতে পাবো।
একটি টিস্যু বক্স বা টুথপেস্টের মোরক সতর্কতার সাথে খুলে দেখতে পারো। দেখবে বাক্স বা মোরকটির ৬টি পৃষ্ঠতল, ১২টি ধার এবং ৮টি শীর্ষ রয়েছে। আবার বাক্সের তলগুলোকে নিচের মতো দেখলে বিপরীত তিন জোড়া অভিন্ন সমান্তরাল সমতল পৃষ্ঠ পাওয়া যাবে। বাক্সটির প্রতিটি আয়তাকার সমতল বা পৃষ্ঠ মেপে আমরা এর সমগ্রতলের ক্ষেত্রফল বের করতে পারব। যদিও পূর্বের শ্রেণিতে আমরা এই ধরনের বাক্সের সমগ্রতলের ক্ষেত্রফল মেপে বের করা
সমগ্রতলের ক্ষেত্রফল মাপি:
- কাগজ কেটে নিচের ছবির মতো প্রথমে একটি আয়তাকার ঘনবস্তুর খাঠামো তৈরি করো।
- কাঠামের প্রতিটি তলের সমান মাপ অনুযায়ী কাগজ কেটে নাও।
- কাঠামোতে দাগাঙ্ক্ষিত এককের সমান করে প্রতিটি তলের কাগজে ক্ষুদ্র বর্গ একক এঁকে নাও।
- কাঠামোটির ছয়টি তলে দাগাঙ্ক্িত কাগজগুলো আঁঠা দিয়ে লাগিয়ে নিলেই ঘনবস্তুটি তৈরি হয়ে যাবে।
প্রতিটি পৃষ্ঠতলের ছোট ছোট “’খোপ’ বা ঘরগুলোতে ক্রমানুসারে 1, 2, 3, ….. সংখ্যাগুলো বসাও। এই ঘরগুলোর প্রত্যেকেই একেকটি বর্গ। কারণ, প্রত্যেকের বাহুর দৈর্ঘ্য সমান বা 1 একক। অর্থাৎ, এরা সবাই “একক বর্গক্ষেত্র”। তোমাদের নিশ্চয়ই জানা আছে “কোন ক্ষেত্রকে (যেমন: ত্রিভুজক্ষেত্র, বগক্ষেত্র, আয়তক্ষেত্র ইত্যাদি) যতগুলো একক বর্গক্ষেত্রে ভাগ করা যায়, & ক্ষেত্রের ক্ষেত্রছকলও তত বর্গ একক হয়”।
তাহলে, এখানে প্রতিটি আয়তাকৃতি তলে যতগুলা ছোট ছোট “খোপ’ বা “ঘর” রয়েছে, তাদের সমষ্টিই হবে এই আয়তাকার ঘনবস্তুটির সমগ্রতলের ক্ষেত্রফল। এবার পৃষ্ঠতলের খোপগুলো বা ঘরগুলোতে সবচেয়ে বড় সংখ্যাটিই হবে ঘনবস্ধুটির সমগ্রতলের ক্ষেত্রফল।
ঘনবস্তুর সমগ্রতলের ক্ষেত্রফল নির্ণয়
একটি আয়তাকার ঘনবস্তুর প্রতিটি সমতল আয়তাকার এবং এর তলগুলোর দৈর্ঘ্য ও প্রস্থকে নিচের চিত্রের সমগ্রতলের ক্ষেত্রফল বের করার একটা বীজগণিতীয় সুত্র তৈরি করার চেষ্টা করি। মনেকরো, তোমার কাছে একটি আয়তাকার ঘনবস্ধু আকৃতির বাক্স আছে। বাক্সটির মাত্রাগুলো অর্থাৎ দৈর্ঘ্য (1) প্রস্থ (8)এবং উচ্চতা (h) নিচের (ক) চিত্রের মতো চিহ্নিত করতে পারো।
এবার বাক্সটি ধীরে ধীরে খুলে ফেলো। দেখবে (খ) চিত্রের ন্যায় তিন গোড়া অভিন্ন পৃষ্ঠতল পাওয়া যাবে। পৃষ্ঠতলগুলোকে (খ) চিত্রের মতো চিহ্নিত করে নাও। বাক্সটি খুলে ফেলায় তুমি যে ছয়টি পৃষ্ঠততল পেলে লক্ষ করলে দেখবে এর প্রতিটিই আয়তাকার। তুমিতো আয়তের ক্ষেত্রফল নির্ণয় করা জানো, তাই না? একটু চিন্তা করে দেখতো, বাক্সটির সমগ্রতলের ক্ষেত্রফল নির্ণয় করা যাবে কিনা?
দলগত কাজ
শ্রেণিকক্ষের দৈর্ঘ্য, প্রস্থ ও উচ্চতা পরিমাপ করো। তারপর নিচের প্রশ্নগুলোর উত্তর দাওঃ
ক. শ্রেণিকক্ষের সমগ্রতলের ক্ষেত্রফল (দরজা ও জানালা বাদে)
খ. পাশ্বতলগুলোর ক্ষেত্রফল
গ. প্রমাণ করো যে, শ্রেণিকক্ষের সমগ্রতলের ক্ষেত্রফল = পার্বতলগুলোর ক্ষেত্রফল + 2 x মেঝের ক্ষেত্রফল।
ঘনক (Cube) তুমি এমন একটি বাক্স নিলে যার মাত্রাগুলো সমান। অর্থাৎ বাক্সটির MG = প্রস্থ = উচ্চতা। বাক্সটির দৈর্ঘ্য, প্রস্থ ও উচ্চতা সমান হলে এরূপ আকৃতিকে কী বলবে? বাক্সটির আকৃতি (ক) চিত্রের মতো হবে।
আরো দেখো: ৭ম শ্রেণির গণিত সকল অধ্যায়ের সমাধান
সপ্তম শ্রেণির শিক্ষার্থীরা, ওপরে দেওয়া Answer Sheet অপশনে ক্লিক করে তোমার ৭ম শ্রেণির গণিত ১০ম অধ্যায় সমাধান ২০২৪ সংগ্রহ করে নাও। ডাউনলোড করতে অসুবিধা হলে আমাদের ফেসবুক পেজে ইনবক্স করো। শিক্ষার্থীরা অন্যান্য বিষয়ের নোট ও সাজেশান্স পেতে আমাদের YouTube চ্যানেলটি SUBSCRIBE করতে পারো এই লিংক থেকে।
Discussion about this post