৭ম শ্রেণির গণিত ৫ম অধ্যায় সমাধান : মনে করো, তোমরা নতুন বাসায় গিয়ে উঠেছো। সেখানে তোমাকে নতুন ঘর দেওয়া হয়েছে। ঘরে বিছানা, আলমারি, ড্রয়ার, বেডসাইড টেবিল সবই আছে। এক পাশের দেয়াল জুড়ে বিশাল জানালাও আছে, সেখান দিয়ে চমৎকার আলো আসে।
কিন্তু তোমার প্রিয় পড়ার টেবিল আর চেয়ারটা নিই। এত সুন্দর একটা ঘর পেলে কিন্তু পড়ার জায়গা পাওয়া যাচ্ছে না, কি বিপদ না? নিচের ছবিতে দেখো, সবকিছুর মাপ কত ফিট করে বলে দেওয়া আছে। তোমার বড় শখ পড়ার টেবিলটিতে জানালা দিয়ে আলো এসে পড়বে। এর মাঝে আবার আলমারিটি দেয়াল থেকে সরানো যায় না।
৭ম শ্রেণির গণিত ৫ম অধ্যায় সমাধান
আর ঘর থেকে কিছু জিনিস সরিয়ে বাইরে রাখবে তারও উপায় নাই, তবে কিছু আসবাবের স্থান পরিবর্তন করতে পারবে। এখন কী করে টেবিল আর চেয়ারটি একটি পছন্দমত জায়গায় বসাতে পারবে? একটু আভাস দিই, তুমি ঠিক ঠিক মাপে কাগজ কেটে এই সমস্যার সমাধান করার চেষ্টা করতে পারো।
সমাধান করতে পারলে? যদি না পারো তা-ও চলবে, তবে চিন্তা করতে থাকো, চেষ্টা করতে থাকো। খেয়াল করে দেখো, ঘরের সমস্যাটি একটি জ্যামিতিক আকৃতির সমস্যা। প্রতিদিনই আমাদের এমন কত কত সমস্যার সমাধান করতে হয়।
কিন্তু জ্যামিতিক আকৃতির ধারণাগুলো জানা থাকলে এসব সমস্যার খুব সুন্দর সমাধান করা সম্ভব। এই অধ্যায়টিতে যেই কাজগুলো রয়েছে, সেগুলি শেষ করলে তোমার প্রয়োজনীয় ধারণা গুলো পেয়ে যাবে। এই অধ্যায়ে ছবি এঁকে, কাগজ কেটে, ভাঁজ করে আমরা বিভিন্ন জ্যামিতিক সমস্যার সমাধান করবো। তাহলে চলো এগুনো যাক।
জ্যামিতিক আকৃতি গঠন আমরা জ্যামিতিক বিভিন্ন আকার আকৃতি কাগজের সঠিক ভাঁজের মাধ্যমে তৈরি করতে পারি। আমাদের সবার প্রথমেই লাগবে একটি কাগজ।
আকৃতি দিয়ে যায় চেনা
কাজ-১: আমরা একটি (A4) কাগজ নিয়ে মাঝ বরাবর ভাঁজ করি। ভাঁজ করা কাগজটিকে আড়াআড়ি করে আবার ভাঁজ করি।
প্রতিটি ভাজ বরাবর আমরা একটি করে রেখা (line) আকি। রেখার মিলিত বিন্দুতে (point) চারটি কোণ (angle) তৈরি হয়েছে। চারটি কোণই পরিমাপ করে দেখো। তারা সবাই সবার সমান। আমরা সমানভাবে আড়াআড়ি ভাঁজ করে এই কোণগুলো তৈরি করেছি। তাই এদের প্রত্যেকটিকে আমরা এক সমকোণ (right angle) বলবো।
চিন্তা করে দেখো, ভাজগুলো যদি সমান না হয় তাহলে কী হবে? কোণগুলোও সমান হবে না। অর্থাৎ আমরা সমকোণ পাবো না। দুইটি রেখা ছেদ করে যদি সমকোণ তৈরি হয় তবে রেখা দুইটিকে পরস্পর লম্ব (perpendicular) বলা হয়।
কাজ-২: ধরো একটি রেখাংশ AB দেয়া আছে। আমরা AB তে অবস্থিত একটি বিন্দুতে একটি লম্ব আকতে চাই। ধরে নিচ্ছি P হচ্ছে সেই বিন্দু যার উপরে আমরা লম্বটি আকবো। AB রেখা আকা কাগজটিকে আমরা চিত্রের মত এমনভাবে ভাঁজ করি যেন ভীজটি ঠিক বিন্দুতে থাকে এবং AB রেখার একটি অংশ অপর অংশের উপরে একদম বরাবর গিয়ে পড়ে।
এই ভাঁজ বরাবর একটি রেখা আঁকো। এবারে তোমরা সেই রেখাটির সাথে AB এর কোণ পরিমাপ করে দেখো। আমরা যদি AB এর এক অংশকে আরেক অংশের বরাবর না রেখে ভাঁজটি করি তখন কোণের পরিমাপ কেমন হবে? পরীক্ষা করে দেখে ক্লাসের সবার সাথে আলোচনা করো।
আমরা জ্যামিতি বক্সের ত্রিকোণী (set squares) ব্যবহার করেও লম্ব আঁকতে পারি। প্রথমে AB সরলরেখাটির ওপর একটি বিন্দু P নিই। AB রেখা বরাবর রুলারের একটি ধার স্থাপন করি এবং খাড়াভাবে ধরে রাখি। রুলার বরাবর ত্রিকোণীর একটি ধার এমনভাবে বসাই যেন এক সমকোণ সংলগ্ন কৌশিক বিন্দুটি বিন্দুর সাথে মিলে যায়।
ত্রিকোণীটি খাড়াভাবে ধরে রেখে PQ রেখাংশ আকি। লক্ষ করো, ত্রিকোণীতে যেহেতু আগে থেকেই একটি সমকোণ তৈরি করা থাকে, আমরা সহজেই সেই সমকোণটির মত করে আরেকটি সমকোণ এঁকে নিচ্ছি।
কাজ-৩: ধরো তোমাদেরকে একটি রেখাংশ AB দিয়ে বলা হলো সেটির সমান করে আরেকটি রেখাংশ আকতে। তোমরা হয়তোবা চিন্তা করবে যে স্কেল দিয়ে দৈর্ঘ্য পরিমাপ করে সেই সমান পরিমাপের আরেকটি রেখাংশ এঁকে ফেলা। কিন্তু যদি আমাদের AB রেখাংশটির দৈর্ঘ্য ভগ্নাংশ এককে থাকে তাহলে সমান পরিমাপ করা খুবই কষ্টসাধ্য হয়ে যায়।
তাই চলো আমরা আরেকটি পদ্ধতি দিয়ে চেষ্টা করি। এক টুকরা সুতা নাও। তারপর প্রদত্ত রেখাংশের এক বিন্দুতে সুতার একটি মাথা বসাও এবং টানটান করে সুতাটি ধরে অপর বিন্দুর সমান করে সুতাটি কেটে নাও। তারপর সুতাটিকে টানটান করে কাগজে বসিয়ে দুইটি বিন্দু চিহ্নিত করো। এবারে স্কেলের সাহায্যে দুইটি বিন্দু যোগ করলেই তোমরা AB এর সমান করে আরেকটি রেখাংশ পেয়ে যাবে।
কাজ-৪: একটি কাগজে একটি রেখাংশ AB রেখাংশ আকা আছে। রেখাংশের দুই শীর্ষের বিন্দু যদি হয় A ও B তাহলে আমরা A কে B এর উপরে নিয়ে চেপে ধরবো এক হাত দিয়ে এবং অন্য হাত দিয়ে আমরা কাগজের যে ভীজ তৈরি হবে সেটিকে সমান করে দিবো।
লক্ষ করে দেখো, ভাঁজ বরাবর আমরা যদি একটি দাগ টানি সেটি একটি সরলরেখা হচ্ছে। একটি স্কেল দিয়ে পরিমাপ করলেই দেখতে পারবে যে ভাঁজের যেকোনো বিন্দু থেকে A ও B দুই বিন্দুর দূরত্বই সমান। অর্থাৎ আমরা AB রেখাংশটিকে সমান দুই ভাগে ভাগ করতে পারলাম।
পরীক্ষা করে দেখো যে A ও B বিন্দুগুলো একদম একটিকে আরেকটির উপরে না চেপে ধরে একটু আশেপাশে চেপে ধরলে ভাঁজ থেকে বিস্দুগুলোর দূরত্ব কীভাবে পরিবর্তন হয়? তোমার চিন্তাটি খাতায় লিখে রাখো। AB ও CD এর মাঝে তৈরি হওয়া কোণ পরিমাপ করে দেখো। এই রেখা দুইটির মাঝে আমরা কোণের পরিমাপ অনুযায়ী তাদেরকে লম্ব বলতে পারি কি? তাহলে আমরা CD কে AB রেখাংশটির লম্ব সমদ্বিখণ্ডক (perpendicular bisector) বলবো।
কাজ-৫: মনে করি, আমাদেরকে একটি রেখা AB দিয়ে বলা হলো এর বাইরের একটি বিন্দু P থেকে AB এর উপরে একটি লম্ব আকতে। আমরা কাজ ১ এ শিখেছি কীভাবে লম্ব পাওয়া যায় এবং কাজ 8 এ শিখেছি কীভাবে একটি রেখার লম্ব সমদ্বিখউক পেতে পারি।
আমরা AB রেখাটিকে এমনভাবে ভাজ করবো যেন ভাঁজের দুইপাশের অংশ একটি আরেকটির সাথে মিলে যায়। কিন্তু এবারে যেহেতু আমাদেরকে একটি নির্দিষ্ট বিন্দু P এর কথা বলে দেয়া হয়েছে, আমরা ভাঁজটি এমনভাবে করবো যেন P বিন্দুটিও ভাজের মাঝে থাকে।
এবারে ভাঁজ বরাবর যদি আমরা CD রেখাংশ আঁকি তাহলেই দেখতে পাবো যে সেটি আমাদের নির্দিষ্ট বিন্দু P বরাবর গিয়েছে। AB ও CD এর মাঝে কোণগুলো পরিমাপ করে কোণের মান খাতায় লিখো। দেখবে যে সবকয়টি কোণই সমকোণ হয়েছে।
কাজ-৬: আমরা একটি কাগজে একটি কোণ ABC নিই যার শীর্ষবিন্দু হচ্ছে B। এবারে আমরা কাগজটিকে ঠিক AB বরাবর ভাজ করি। BC রেখাটি কাগজের যে অংশের সাথে মিলে যায় সেখানে আমরা একটি রেখাংশ এঁকে নিই।
এবারে কোণ ABC ও কোণ ABD কে পরিমাপ করে তাদের তুলনা করে দেখো। দেখতে পাবে যে তাদের পরিমাপ সমান। অর্থাৎ আমরা কোণ ABC এর সমান করে নতুন আরেকটি কোণ আঁকতে পারলাম। কোণ দুইটি পরিমাপ করে দেখো। তারা পরস্পর সমান এবং প্রত্যেকেই কোণ ABC এর অর্ধেক।
কাজ ৬ থেকে আমরা এটা বলতে পারি। কারণ সেখানে আমরা থেকে কোণের বাহগুলো এক সমান দূরত্ব বজায় রেখেছে। অর্থাৎ আমরা যদি একটি কোণের মাঝে দিয়ে একটি রেখাংশ আঁকতে পারি যা কোণের দুই বাহু থেকে সমান দূরত্ব বজায় রাখে তাহলেই আমরা কোণের সমদ্বিখডক পেয়ে যাচ্ছি।
চিত্রটি লক্ষ করো, পরস্পর ছেদ করা রেখা জোড়ার ছেদবিন্দুর দিকে তাকাও। AB ও CD দুইটি সরলরেখা যারা পরস্পর 0 বিন্দুতে ছেদ করেছে। এর ফলে সেখানে দুইজোড়া কোণ তৈরি হয়েছে যারা পরস্পর বিপরীতমুখী। এই দুইজোড়ার প্রতিজোড়াকে আমরা বলবো বিপ্রতীপ কোণ ((vertically opposite angle)। এদের প্রত্যেকের শীর্ষবিন্দু 0.
তোমাদের মনে প্রশ্ন জাগার কথা, আমরা বিপরীত বলছি না কেন, সেটাই তো বলা সহজ। এবারে পরের চিত্রটি লক্ষ করো। ১ চিহ্ন দেয়া কোণ আর ২ চিহ্ন দেয়া কোণ দুইটিরও একই শীর্ষবিন্দু, কিন্তু ১ কোণটির বাহুগুলোকে বিপরীত দিকে বাড়ালে আমরা ২ কোণটিকে পাই না। এখানে তারা শুধুই বিপরীত কোণ। বিপ্রতীপ হবে তখনই, যখন একটি কোণের বাহুগুলোকে বিপরীতে বৃদ্ধি করলে আরেকটিকে পাওয়া যায়।
কাজ-৮: এবারে একটি কাগজ নিই যেখানে AB ও CD দুইটি সরলরেখা আকা যারা পরস্পর O বিন্দুতে ছেদ করেছে। তারপর O বিন্দু বরাবর এমনভাবে ভাঁজ করি যেন BO এবং CO অংশগুলো একে অপরের সাথে মিলে যায়। AO এবং DO এর অবস্থান লক্ষ করো। তারা কি মিলে গিয়েছে? এখান থেকে আমরা বিপ্রতীপ কোণের ব্যাপারে কী সিদ্ধান্ত নিতে পারি?
আরো দেখো: ৭ম শ্রেণির গণিত সকল অধ্যায়ের সমাধান
সপ্তম শ্রেণির শিক্ষার্থীরা, ওপরে দেওয়া Answer Sheet অপশনে ক্লিক করে তোমার ৭ম শ্রেণির গণিত ৫ম অধ্যায় সমাধান ২০২৪ সংগ্রহ করে নাও। ডাউনলোড করতে অসুবিধা হলে আমাদের ফেসবুক পেজে ইনবক্স করো। শিক্ষার্থীরা অন্যান্য বিষয়ের নোট ও সাজেশান্স পেতে আমাদের YouTube চ্যানেলটি SUBSCRIBE করতে পারো এই লিংক থেকে।
Discussion about this post